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In this paper we present a high-efficiency medium-granted parallel spectral element method 
for numerical solution of the Stokes problem in general domains. The method is based upon: 
naturally concurrent Uzawa and Jacobi-preconditioned conjugate gradient iterative methods; 
geometry-based data-parallel distribution of work amongst processors; nearest-neighbor 
sparsity and high-order substructuring for minimum communication; general locally- 
structured/globally-unstructured parallel constructs; and efficient embedding of vector 
reduction operations for inner product and norm calculation. An analysis is given for the 
computational complexity of the algorithm on a “native” medium-grained parallel processor, 
and the potential communication superiority of high-order discretizations is described. Lastly, 
the method is implemented on the (fast) Intel vector hypercube, and the performance of this 
algorithm-architecture coupling is evaluated in a technical and economic framework that 
reflects the true advantages of parallel solution of partial differential equations. ‘C 1991 

Academic Press, Inc. 

INTRODUCTION 

The solution of fluid dynamics problems by numerical simulation has advanced 
rapidly in recent years due to simultaneous improvements in algorithms and 
computers. However, despite these advances, computational fluid dynamics is still 
unable to address many problems of fundamental and practical importance due to 
the large number of degrees-of-freedom required to resolve relatively simple three- 
dimensional laminar flows, let alone transitional and turbulent flows. In essence, 
large-scale fluid mechanics calculations are still too costly in terms of human and 
computational resources to assume the role of “primary means of analysis.” 

A promising approach to reducing the costly nature of fluid dynamics calcula- 
tions is to solve problems not on a single (expensive) computer, but rather to dis- 
tribute the work amongst many less powerful (and less expensive) processors. The 
potential increase in efficiency due to the economies of parallel processing derive 
not only from decreases in direct costs, but also from improvements in productivity 
and creativity brought about by a more local and interactive computing environ- 
ment. Unfortunately, the availability of parallel processors does not necessarily 
imply their efficient usage, and care must be taken in developing numerical algo- 
rithms that are appropriate for parallel implementation. 

The purpose of the present paper is to describe a spectral element algorithm for 
the Stokes (and, by extension, Navier-Stokes) equations which exploits with high 
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parallel efficiency the distributed-memory parallei computers currently available. 
Our work builds extensively on past work on parallel partial differential equation 
solution in the choice of an iterative solver, as well as in the underlying strategy of 
load balancing, communication, and topological embeddings. Hn particular, our 
schemes are founded on the following well-developed precepts: use of iterative 
solvers that exploit sparsity and minimize non-concurrent operations, e.g., ‘[I-. 21: 
geometry-based data-parallel distribution of work amongst processors, e.g., [M:]: 
exploitation of nearest-neighbor sparsity and substructuring to minimize com- 
munication, e.g., [7, 81; efficient embedding of vector reduction operations to allow 
for more general and implicit solution algorithms? e.g., [9, 101. 

The methods presented in this paper represent an extension of these well- 
estabished ideas in the following ways. First, the spectral element discretizations 
[ 1 I] employed are high-order, leading not only to improved accuracy but also to 
a more efficient, work-intensive medium-granted parallelism. Second, the discretiza- 
tions, solvers, and parallel constructs are built upon the general founds:ion of 
locally-structuredjglobally-unstructured representations, thus allowing for efficiea; 
implementation in arbitrary geometries. Third, the equations solved are the fut: 
equaiions describing viscous fluid flow, as opposed to (second-order elliptic) scb- 
sets of the Stokes problem; all potentially non-concurrent hazards are therefore 
addressed. Lastly, the methods are implemented on a.fusr vector parallel processor, 
and thus relative performance measures such as parallel efficiency can be s:;p- 
plemented with meaningful absolute measures such as cost-per-solution. 

The outline of the paper is as follows. In Section i we briefly describe an 
economic caricature of computation with the aim of providing a rational 
fr.amework in wRich to evaluate parallel performance. In Section 2 we introduce the 
spectral element discretization for elliptic operators, and indicate the extension of 
these discretizations to the Stokes and Navier-Stokes equations. In Section 3 we 
present a representative iterative solution procedure for the spectrai element 
discretizaeion and give serial computational complexity estimates. In Section 4 
the “‘native” medium-grainedjdistributed-memory spectra? element paralleiism is 
presented and theoretical models are given for performance of the solution methods 
on various architectures. We also present a comparison of the relative me&cm- 
grained parallel potential of high-order and low-order variational discretiza:iox. 
Lastly, in Section 5, the implementation of the methods is described, both in terms 
of general software constructs and for the particular case of the Bntei tPSC -sector 
hypercube. Computational results and performance measures are presented :het 
demonstrate the advantage of spectral element algorithms on modern paralie: 
computers 

1. ECONOMIC CARKXTURE 

Given the complexity of parallel computation as compared to its serial counter.~ 
part, it is imperative to verify that there is a soun economic basis for the notion 
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that parallelism will lead to improved computational “efficiency.” To this end, we 
briefly review an economic caricature of the costs associated with numerical simula- 
tion. The particular physical problem of interest is fixed, and the maximum error 
that can be tolerated in the numerical solution, E, is specified. We then choose an 
algorithm and architecture/machine with which to solve the problem: the former is 
characterized by W, the number of floating point operations required to attain the 
specified accuracy; the latter is characterized by the usual “fully-utilized” speed 
rating, s (in units of MFLOPS), and a purchase cost, C (in dollars, say). The wall- 
clock time to perform the calculation is then given by r = ( W/lO$js), and the direct 
computer costs are given by c = W/(106ije t,,,). Here 4 is an algorithm-architecture 
efficiency parameter; e = s/C is a measure of the resource efficiency of a computer; 
and ldep is a depreciation time (C/t,,, then represents a unit-time cost). 

Although it is not appropriate in this context to introduce any particular com- 
putation cost function, it is clear that an unambiguous condition for reduction in 
cost (i.e., improvement in performance) is a simultaneous decrease in both the time 
to compute, z, and the direct computer cost of the solution, c. From the rela- 
tionships between (r, c) and (IV, s, e) we conclude that any algorithm-architecture 
coupling that corresponds to a decrease in W, an increase in s, and an increase in 
efficiency e constitutes a real increase in performance. There are two different 
avenues to improving performance. First, a better numerical algorithm can be 
devised, corresponding to a decrease in operation count: UT. at fixed accuracy; this 
decreased operation count may be achieved either through improvements in 
discretization or through improvements in solution method. Second, a “better” 
computer can be found, in which both the speed, s, and resource-efficiency, e, are 
increased. 

To illustrate more clearly the cost reduction due to computer performance, we 
plot in Fig. 1 the (s, e) operating points of several modern computers (this data is 
given in tabular form in Appendix A). It follows from the arguments given above 
that for a fixed algorithm and a fixed algorithm-architecture coupling, 4, a com- 
puter A is better than a computer B if A is in the quadrant above and to the right 
of B in s-e space. It is seen from Fig. 1 that supercomputers have made great strides 
in reducing t, however, they have had little impact as regards c; this is consistent 
with the fact that supercomputers are typically used only where the potential profit 
is large and the analysis alternatives (e.g., experiment) are expensive. 

In order to render the calculation of complex three-dimensional flows quotidian 
we will require significantly more resource-efficient computers. In fact, these 
machines now exist; within the past few years computers have emerged which are 
characterized by a resource-efficiency rating, g, which is a full factor of 10 better 
than the previous norm, 6. This progress has been effected by basic hardware 
advances, that is, new technology, at the low MFLOPS limit of the e = C curve, 
followed by parallel architecture advances which extend the performance envelope 
to the high-MFLOPS limit. In terms of the “quadrant of improvement” there now 
exist machines that represent clear improvements in performance over current 
mainframe and supercomputers alike. 



PARALLEL ELEMENT SPECTRAL SOLUTION 583 

FPS-164 0 

FIG. 1. Operating points (peak theoretical) of several modern compute:s in s--c space. Lines 0: 
constant 3 are lines of constant calculation time, T: lines of constant e are lines of constant caiculaiio~ 

cost. c. Cost data is given in Appendix A; in al! cases M,,, processors are us-d. 

The fact that computer manufacturers are able to increase the number oi 
processors in a system, AI,,,, with only a slightly faster than linear increase in cost 
is indicative of the fact that most of the new high-MFLOPS e = S machines consist 
of processors which are largely independent, coupled by a rather sparse (albeit 
sophisticated) connection/routing network. This distributed-memory paradigm 
appears critical to maintaining cost effectiveness, in that it eliminates the need for 
many expensive memory access routes. The burden is thus placed on the algorithm 
to be sufficiently concurrent and “uncommunicative” to realize this ideal algorAm- 
independent performance; that is, the numerical algorithms must attain a su:‘- 
ficiently high algorithm-architecture effkientcy 4 so as not to erode the savings in 
5 and c due to increase in s and e. Note that if we ignore other architectural issues 
sech as vectorization, li; reduces to the usual definition of parallel efficiency. 
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q = .5,/M, where M is the number of processors used in a calculation, and S, is the 
parallel speedup, defined as S, = 7 1 _ proc,h,~f - proc. 

Having introduced our metrics of success in r and c, and hence s and e, we now 
turn to the algorithmic issues of determining CY and G. 

2. THE SPECTRAL ELEMENT DISCRETIZATION 

2.1. One-Dimensional Elliptic Problem 

We present the spectral element method in some detail, as our parallel algorithms 
and constructs are closely coupled to the underlying discretization. The method is 
quite similar to /z-type finite element substructure procedures [4, 121, as will be 
described in greater detail in Section 4.3. We begin by considering the simple one- 
dimensional “Poisson” equation, 

with homogeneous Dirichlet boundary conditions 

U(-I)=u(l)=O, (lb) 

where A is the interval XE ] - 1, l[. The basis for our numerical scheme is the 
variational form associated with (1): Find UEH~(A) such that 

The function spaces L’(A) and HA(A) are defined by L2(A j = (u 1 s,l ZIP d,u < CC >, 
and Hh(.4)= { ( D UEL2(A), U,EL’(A), u(-l)=v(l)=O}. 

The spectral element method [ 11, 131 proceeds by specifying the discretization 
pair !z = (K, N) and breaking up the interval A into K (assumed equal) subintervals, 

where zk is defined by ak < x < ak + b. We then choose for the approximation of the 
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solution li a subspace X,! of H;(A) consisting of all piecewise polynomials of 
degree d N? 

x,= Y,Jdf&l,> (42) 

where 

Y,= ~LIIL’l,lkEPN(Jlkbl. i&f 

ere ,,,(A”) is the space of functions which are polynomial of degree dN on t::e 
interval Ak. 

The spectral element discretization corresponds to numerical quadrature of the 
variational form (2) restricted to the subspace X,I. Find uh E A’, such that 

ah, GL(Uh? t’) = tf, L’)h, GL vc E x,, 
:(c 

;) \- 

where ( ~, ),I, GL and a ,[, GL( . , . ) refer to Gauss-Lobatto quadrature of the inner 
products defined in (3a) and (3b), respectively, 

Here the <: = ak + ({,, + 1) b/2, 0 d n 6 N, 16 k < K. are the locations of the iocd 

nodes (n; k), and the 4,, p”, 0 611 d N, are the Gauss-Lobatto Legendre quad- 
rature points and weights, respectively [14]. It can be shown that the spectral 
element solution 14~ converges spectrally fast to the exact solution u as N + 3; for 
K fixed, with exponential convergence being obtained for (locally j infinitely smooth 
data and solution [13]. 

The last step in the actual implementation of (5) is representation of u,, by a basis 
which reflects the sparsity and structure intrinsic to the piecewise-smooth space xi, 
in (4); the choice of basis will prove critical in subsequent efficient par&% 
implementation. We choose an interpolant basis to represent 5~~~ E XtZ, 

N 
tt’h 1 ,& = 1 tt’;h, ( f-), I E A k =+ I E I {7a) 

p=O 

jlp E PN(O, hJi,j = 6,, Yp. q E 10, ...r N)?, ,:b: I , 

where IV: = IV,~([~) is the value of n!h at local node (p; k>? 6,, is the Kronecker-delta 
symbol, and I is the interval ] - 1, I[, with x E A” and I’E I reiated by 
x = ak + (1. + 1) b/2. To honor the H’ requirement and the essential boundary 
conditions (lb) we further require that 
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and 

,I$ = CL’; = 0, (8b) 

respectively. Note that for a function ~1~ which is in Y,,, but not X,,, we use the 
same representation (7) but no longer require the conditions (8). For the spectral 
element mesh shown in Fig. 2a the nodal bases for X,! and Y,Z are depicted diagram- 
matically in Figs. 2b and c, respectively; one-dimensional diagram conventions are 
defined in Table I. 

We now insert (7)-(8) into (5t(6) to arrive at the final discrete matrix state- 
ment, 

‘z;” 2 a& 11; = z;” i &f:, VICE { 1, . ..) K}, VJJE (0, . . . . Nj, 
q=O q=O 

where j’i =f( tt) is the interpolant of the inhomogeneity, and 

(9) 

a:,=; 5 ~nD,pD,,q vp, q E (0, . ..) iv}' 

n=O 

j;q = 4 Pp 6,, vp, q E {O, . ..) iv}? 

D,,=$(i,) vp, q E (0, . ..) iv}? 

Here Z’p” denotes “direct stiffness” summation, in which contributions from local 
nodes {p; k) which are physically coincident are summed (enforcing (8a)), and con- 
tributions from local nodes {p; q} which correspond to domain boundary points 
(here x = + 1) are masked to zero (enforcing (8b)). Direct stiffness summation can 
be thought of as an operator Z’: Y, + X,, as described diagrammatically in Fig. 3. 

Although in practice parallel spectral element iterative procedures are based 

I 
I I I 
I I I I 

(a) 

(b) 

- - - - 

(cl 
FIG. 2. Spectral element discretization for four elements in R’ (a), with the corresponding nodal 

basis representation of the functional spaces X;, (b), and Y, (c). 
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TABLE I 

Diagrams in 8’ 
- 

Data Type Nodal Content Symbol 

F-ertex * O (local) 
0 (global) 

lEdge[ wf, i E (1, .~.,N - 1) 

Operations 

Assign Vertex 

Summation of Vertices S-bO+e 

:vDre. Open or dashed objects denote destinatior,s. Solid 
objects denote sources. 

entirely on element-level calculations, it is of interest for notational purposes tc 
define a global representation. In particular, we introduce a mapping from local 
node numbers (p; k) to global node numbers (cl jc3 in which al local node 
numbers which reference the same nodal position map to a unique (qjG (e.g.z 
{PC k! = 10; k + 1 ] = ( . jG). In terms of this local-to-global mapping we then 
de&e’ a global-numbered condensed representation of a function, trh E X)z as ~7, 
where u’ is the vector of values of i\yh at all physically distinct nodes. The discreee 
equations (9) can be written in global form as 

Au=g. (inil 

FIG. 3. Direct stiffness summation in R’ represented as a mapping of data from Y,, to .k’;, : ia / S’XII- 
mation; (b) redistribution. 
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where 

p = 2;: A,, VkE (I, . ..) K}, vp, qE (0, . . . . N}2, (1-W 

s=~;kf &f; t’kE{l,..., K}, Vp+l,..., N). (12b) 
q=o 

2.2. Multi-dimensional Elliptic Operators 

We next consider the multi-dimensional elliptic equation, 

-v=u =f, XEQ, 

with homogeneous Dirichlet boundary conditions 

U3a) 

u=o on af2, (13b) 

in some bounded domain Q in Rd. The variational form for ( 13 ) is given by: Find 
U(X) E HA(Q) such that 

a(u, ~7) = (J; 0) vu E H:(Q), (14) 

where 
(9, $) = i, 9(x) $(x1 dx, (Isa) 

a(d, ICI)= lQ 04 .V$ dx. (15b) 

The Sobolev spaces L’(Q) and HA(Q) are the usual multi-dimensional analogues of 
L’(A) and HA(A) defined previously. 

For illustrative purposes we describe the simple case where the domain Q is a 
two-dimensional region representable by the union of K squares 12’ of edge length 
two, 

o= () Qk. 
/iz, 

(Three-dimensional curved-geometry examples are given in Section 5.) The solution 
U(X) is approximated by a subspace X,! of HA(Q) consisting of all piecewise 
polynomials of degree <N, 

x, = Yh n H#2), (lea) 

Y,= {o~u~nPEPN(Rk)}, (16b) 

where now P,(Qkj is the space of all polynomials of degree <N in each spatial 
direction. The spectral element discretization is then: Find uh E X,, such that 

ah, GL(% u, = (.f, u)h, GL VtlEXh, (17) 
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V&X ( - y )A, GL and ah, GI. ( . , . ) refer to tensor-product Gauss-Lobatto quadrature 
of the inner products defined in (15a) and (15b j, respectively: 

k = I m, ,I = 0 

The choice of basis in higher space dimensions is even more critical than in one 
space dimension, as the internal as well as element-boundary test functions directly 
affect the efficiency of the scheme. We choose a tensor-product interpolant basis 80 
represent wh 6 x,, 

It.h(X, YjlQk = $ f Iv;q h,(r) h,(s), xERk=+r,s)~fx~, (19) 
p=o q=o 

where Y and s are the local coordinates corresponding to transl.ations of s and jy, 
respectively; H& = HJ,(<~, <i) is the value of u‘~ at local node (p, q; k); and the h,(t) 
are the one-dimensional Gauss-Lobatto Lagrangian interpolants defined in (7b ). 
Although for a function \i’II in I’, (19) is sufficient without further continuity condi- 
tions, for a function H’/, in XI, the representation (19 j is not complete until the 
two-dimensional Hh conditions analogous to (8) have been incorporated. Pn multi- 
dimensional problems the diagrammatic representations are much simpler than 
their indical embodiments, and we thus forego the latter in favor of the former. For 
the spectral element mesh shown in Fig. 4a we present in Figs. 4b and c the 
diagrammatic representations of the bases Xh and YA, respectively, in terms of the 
two-dimensional diagrams defined in Table II. 

The bases (19) are then inserted into the variational form ( 17) and inner 
products (IS) to arrive at the final discrete matrix statement of the two-dimensional 
problem, 

N N 

where the At,, &, are the one-dimensional operators defined in (ISj (with h = 2f3 
and the two-dimensional direct stiffness operation 2’: Y,z 3 X, is shown diagram- 
matically in Fig. 5. For notational purposes the system (20) can be reduced ?o a 
standard global form via the {p, q; k} + ( . jG mapping, 

Al!=g, (21) 

with A, _u, and g defined analogously to their one-dimensional counterparts in 
(II)-(12). - 



390 FISCHER AND PATERA 

(a) 

*o .._...... !: Od 

+/ # It 

0 r’ .._.... 0 n i 
* 0 i od 

+I # ic 

6 a ~ 

(b) 

\ a 0 ,...............,....... ,J ‘ 
+[ # ic 
0 r‘ 0 K L , 0 f 0 * 
+! # I+ 
0 ~ ,........ 0 . 

FIG. 4. Spectral element discretization for four elements in R2 (a), with the corresponding nodal 
basis representation of the functional spaces A’, (b), and Y, (c). 

2.3. The Steady Stokes Problem 

Armed with the detailed descriptions of spectral element projection operators, 
spaces, and bases described in the last section, we now turn to the discretization of 
the steady (incompressible) Stokes equations, 

-V%+Vp=f in Q (22a) 

-v.u=o in Q (22b) 

u=o on &2, (22c) 

where u(x) is the velocity, p is the pressure, and f is the force. The equations are 
appropriately non-dimensionalized such that the viscosity and density of the fluid 
are unity. The variational form of (22) is well known Cl.5, 161: Find u E (HA(Q))” 
and p E L:(Q) such that 

a(u, v) - b(p, v) = (6 v) vv E (H$2))d Wa) 

-b(q, uj=o vq E L;(Q). Wb) 
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TABLE II 

Diagrams in R2 

Data Type Nodal Content -L---- Symbol 
____ __-~ 

1 E&4 wFly i=O,N, jE{l,,.., N-l} ___ (local) 

i = O,N, i E {l,...,N - 1) iEiiEz2 (glObal) 

iEdge w1;, i=O,N,jE{O )..., N) o--- 0 (2od) 
j=O,N, i~(0 ,..., N) - 

area wt;,, i,j E {I ,..., N - 1)’ 

Operations -- 

Assign Vertex 

Assign ]Edge[ 

Summation of Vertices 

Summation of ]Edges[ 

Sum & Redistribute [Edges] 

Note. Open or dashed objects denote destinations. Solid objects denote 
sources, except in the sum and redistribute operation where botri objects act as 
sources and destinations. 

AL1 inner products and spaces have been defined previously save Ir( , .), 

vq% E L2(R), w E (H@)y, b(qS, w) = [ CD(x) div w dx. 
J 52 

(The space Li is the space of all functions in L’ with zero mean.) 
The spectral element discretization is then: Find uh E (X, 1” and p E M,Z such tbat 
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3. ITERATIVE SOLUTION PnocEDuREs 

The natural choice of solution algorithm in a parallel environment is an iterative 
procedure, given that such techniques can be both highly local and concurrent. In 
this section we describe essential features of iterative spectral element solvers. 

3.1. Evaiuation of Spectral Element Operators 

At the heart of any iterative solver is the evaluation of matrix-vector products 
such as those that appear in (20). We review here briefly how these products can 
be efficiently calculated using sum-factorization methods [243. Considering a repre- 
sentative term in (20): the double sum can be factored as 

It is clear that, for a discretization in Rd, each term in parentheses in (28) can be 
evaluated in O(KNd b ‘) operations, and that the final direct stiffness summation 
described by Fig. 5 will require O(KN”- ’ j operations. It thus follows that the num- 

ber of clock cycles required to evaluate the left side of (20) on a smgle processor 
iS 

Z;=clKNd+‘+cjKNd+c,KN‘-“. (29j 

ere, and in what follows, constants cr ~ ci) c3: . . . depend only on spatial dimension 
and not on K, N, or the number of processors in the system. The O(KNd) contr$x- 
Con to Zl is only present in the case of complex geometry or non-separable coef- 
ficients. Et should also be noted that only O(KN”) storage is required to evaiuate 
A@. 

The proper choice of spectral element basis is directly reflected in the ‘“good” 
computational complexity estimate Z;. First, the sum-factorization (28) 2d the 
operation count (29) applies to general-geometry isoparametric spectrai element 
discretizations of non-separable equations [ 131, due to the tensor product element- 
geometry, tensor product spaces (16), tensor product quadratures (18), and tensor 
product bases (19) described in Section 2. Second, the direct stiffness summation 
contribution to Z; is only O(KNd~-‘), rather than O(KNdf ‘), due to our choice of 
basis (Fig. 4) in which the number of test functions which are nonzero on the 
elemental boundary is minimal. Although the fact that the direct stiffness summa- 
tion work is small does not appear particularly important in the single-processor 
estimate (29): in the parallel case the direct stiffness contribution will be the 
leading-order communication term. 

3.2. Conjugate Gradient Iteration 

We next consider simple Jacobi (diagonal)-preconditioned conjugate-gradient 
iterative solution [125] of the multi-dimensional elliptic equation (21). The 
conjugate gradient algorithm is given by 
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g”;.o=g-A go; _4O=p-‘yO; Jo = go (30) 

b’” = (f + ‘, snt + 1 )/(L’“*, _s’“); f” + ’ = s” + I + bmq’“, 

where J’ = diag(d) is the diagonal preconditioner, superscripts denote iteration 
number, and ( , . ) refers to the usual inner product. Note that _P can be formed 
explicitly without constructing the entire A operator. 

From (30) we see that, per iteration, the conjugate gradient scheme requires: one 
matrix-vector evaluation-Z: cycles; several local collocation operations--O(KNd) 
cycles; and two inner products--O(KNd) cycles. If we denote by N: the number of 
iterations required to bring the error in the solution down to O(E) in some 
appropriate norm [22,26], the number of clock cycles for conjugate gradient 
solution of (21) is 

Zf = N,A(c,KNd+’ + c2KNd+ c3KNd-‘), (31) 

where the c1 term represents all matrix-vector products, the c? term represents all 
collocation operations and vector reduction (inner product/norm) calculations, and 
the cg term represents direct stiffness summation. 

Although in the evaluation of parallel performance in Section 3 the number of 
iterations, Nf, will scale out, it is nevertheless appropriate to comment on the 
number of iterations required to achieve convergence. Denoting K,,~ the condition 
number of any symmetric matrix &f, it can be shown that K~ -KfN3, and 
K,p-Li?Ap-l;?) - O(K:N*) [27] (note this convergence rate is basis-dependent). Here 
Ki is the number of spectral elements in one spatial direction. It thus follows that 
for conjugate gradient iteration Nt - KIN. The convergence rate can be improved 
to near optimality by the use of spectral element multigrid algorithms [27,28]. 

3.3. Uzawa Steady-Stokes Algorithm 

The Uzawa iterative procedure [16,29,30] for the Stokes problem (27) is based 
on decomposition of the saddle problem into two symmetric-definite forms, 

Wb) 
where 
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The system (33) is solved by nested conjugate gradient iteration, 

in which the 3s product is evaluated by 

y=wq (35a) 

AZ=? (35b‘i 

Sq=D-3, 13Sc) 

and the system (35b) is solved by an inner conjugate gradient iteration (30). The 
matrix B appearing as preconditioner in (34) is the diagonal pressure mass matrix. 
Once the pressure is known, (32a) is solved following (30). 

To arrive at a final work estimate for the Stokes problem we note that all the 
operations present in (34))(35) are already present in the conjugate gradient 
iteration (30); as Nt will always be “large” compared to unity, it follows that the 
number of clock cycles for a Stokes solve on a single processor scales as 

Z~=?J”N~(C,KN~+‘+C,K~~“~~,KN’~~‘), 136) 

to leading order in 1,/N:. As far as the conditioning of the outer iteration i$ con- 
cerned, it can be shown that the matrix 3 is spectrally quite close to the identity 
operator, that is, rcs- 0( 1) independent of K and N [23,26]. This good condition- 
ing can be intuited by remarking that 5 is essentially the product of two gradient 
operators and an inverse Laplacian; the latter balances the former, resulting in a 
bounded operator. It follows that the outer conjugate gradient iteration (34) wil! 
converge in order unity iterations, N” - O(,l). We conclude that the Uzawa algo- 
rithm effectively reduces the Stokes problem (27) to the Poisson problem (21) as 
regards computational complexity and parallelism; the same is true for other Stokes 
discretization,‘solvers. such as the operator-splitting techniques [3? ]. 

4. PARALLEL SPECTRAL Ewhmn Sorxmm TECXNIQLIE~ 

Our construction of parallel algorithms is broken into three coupled steps. In the 
First step, described in the previous section, discretizations and solvers are 
developed that are designed to exploit concurrency and minimize communication. 
In the second step, we consider the effectiveness of the resulting algorithms on a 
“‘native” parallel processor, that is, a conceptual machine which directly mimics the 
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natural parallelism in the underlying numerical approach. In the third step, the 
adaption of the method to existing (and typically non-specialized) architectures is 
considered, with various non-idealities characterized by efficiencies or multipliers 
with respect to the “native” architecture. 

The purpose of breaking apart the second and third steps is to provide, through 
the second step, a fairly generic analysis of the method that is not tied to the 
specifics of any particular machine. Furthermore, breaking apart the second and 
third steps allows for architectural comparisons, rather than case-by-case algo- 
rithm-architecture analyses. It should be clear that all three steps of the develop- 
ment process are closely coupled; a numerical method which results in a native 
parallelism which has no efficient realization does not constitute a viable approach. 

4.1. Native Parallelism 

The spectral element discretizations, bases, and iterative solvers of the previous 
sections are constructed so as to admit a native, geometry-based data parallelism 
[32], in which each spectral element (or group of spectral elements) is mapped to 
a seperate processor/memory unit, with the individual processor/memory units being 
linked by a relatively sparse communications network. This conceptual architecture 
is naturally suited to the spectral element discretization in that it provides for tight, 
structured coupling within the dense elemental constructs, while simultaneously 
maintaining generality and concurrency at the level of the unstructured macro- 
element skeleton. The locally-structured/globally-unstructured spectral element 
parallel paradigm is closely related to the concept of domain-decomposition by 
substructured finite elements [4, 5? 121, and many of our results are germane to 
both computational models. This latter point will be discussed in greater detail in 
Section 4.3. 

We shall begin by considering the performance of the method on the native 
medium-grained distributed-memory parallel processor shown in Fig. 6, in which K 
spectral elements are partitioned amongst A4 < K independent processor/memory 
units, P,, . . . . P,. (Our terminology will be two-dimensional; however, the methods 
readily extend to three space dimensions, as will be demonstrated by examples in 
Section 5.) In essence, each processor contains a “super-substructure” of several 
spectral elements. We denote the set of all elements E = {l, . . . . K) and the set 
of elements associated with processor P, as E,= (...}, with E= U4E4, and 
E, n E, = @ for p # q. We assume load balance in the sense that all processors have 
an equal number of elements. 

The communications network of the native parallel processor is assumed to 
satisfy two constraints: 

a distinct, direct link exists between two processors P, and P,, 
p # q, for each distinct pair of elements (m, n), m E E,, n E E, that 
share an edge; (37a) 

a summation of M values distributed over M processors can be 
performed in O(log M) communication steps. W’b) 
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C Data Commun!catisn --+ 

Processor 6 

FIG. 6. (a) Spectral eiement decomposition for a multiply connected domain (element numbers 
denoted by G); (b) associated “native” parallel processor. 

These two requirements relate directly to the two communication constructs centrai 
to our algorithm, direct stiffness summation and vector reduction, respectively. 
(Note that log denotes logarithm base 2 and In denotes logarithm base e.) 

We characterize the “hardware” associated with the processors and communica- 
tion networks in Fig. 6 by a basic clock cycle for calculation, 6 (measured. say, in 
seconds), and the time-per-word required to send PI words across a direct hnk, 
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d(m). It is assumed that data transfer can occur simultaneously over all distinct 
links. The ratio A/6 is denoted a(m); o(nz) is assumed to be a decreasing function 
of m, with G( 1) appreciably greater than e(co) due to message startup overhead. 
Messages travelling more than one link (or “hop”) can be penalized in terms of 
both longer transmission time and potential contention. (Contention represents 
network imbalance/saturation and arises when more than one potentially parallel 
communication requires the same link. j 

As indicated previously, if no real machines were similar to the hypothetical 
architecture described above, the resulting analysis would be of fairly limited value. 
However, there are many architectures which are identical to, or at least very 
similar to, the native architecture of Fig. 6. In particular, reconligurable lattices 
[33] readily satisfy constraints (37), and lattice or hypercube message-passing 
architectures satisfy all constraints save the assurance of nearest neighbor, conten- 
tion-free communication. Most importantly, the native processor is in some sense 
a lowest common denominator for architectures, in that coarser grained, shared- 
memory and large-cache machines imply algorithm simplifications, not additions. 
This implies that an algorithm designed to perform effectively on the native 
machine should, in fact, perform well on a large class of real machines. This will be 
demonstrated in Section 5. 

4.2. Parallel Algorithms and Computational Complexitlp 

We consider here M-parallel solution of the h = (K, N) elliptic spectral element 
discretization (21 j by conjugate gradient iteration (30) on the native architecture 
of Fig. 6. As described in Section 4.2, the performance of the conjugate gradient 
iteration is determined by the following representative computational kernels: 

r=.& (384 

c=pg (38b) 

a = (~4 ~1, (38c) 

corresponding to operator evaluation, diagonal-matrix collocation, and norm (or 
inner product) calculation, respectively. We now discuss how each of these opera- 
tions is performed in parallel and present computational complexity estimates [S] 
for the resulting algorithms. 

We begin with the evaluation of a representative term of r f &, (20), which, by 
construction, admits the following simple concurrency. First, we calculate an 
“incomplete” residual il, E Y,! in each element concurrently, 

;~={(~~A*,(~~~~~u~~))) VkE{l,...,K), Vij~{0,...,N}~. (39) 

(This residual is incomplete in the sense that the element-boundary-node dis- 
placements are not admissible; direct stiffness is the process by which appropriate 
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contributions are added from neighboring-element test functions.) This operation is 
communication-free and will require 

c1 KNd+ ‘.!‘M 

“waik” clock cycles. where c1 is defined by (31). 
Next, we perform direct stiffness to find the actual nodal residuals rh E ‘YJz. 

where the direct stiffness procedure is described in Fig. 5. The Row of informazion 
at vertices in Fig. 5 is clearly not coincident with the possible singie-hop Bow cf 
information along links in our parallel processor described by Fig. 6. However, an 
efficient direct stiffness procedure based on nearest-neighbor use of the edge-based 
communication network can be constructed, as we now describe. 

We first consider the simple spectral element mesh shown in Fig. 4a, in w-hi& 
data i, E I’, is given on each element. In Fig. 7 we show diagrammatica!ly how 
direct stiffness summation can be performed by local directional splitting of :he 
operation into a sequence (Z) of d= 2 element edge exchanges. It can be seen that 
the nodal values at the vertices are, indeed, correct; that is, the sequence (L) of 
Fig. 7 is algebraically equivalent to Fig. 5. The advantages of this splitting method 
over, say, a bidirectional parallel edge pass foliowed by vertex-specific opereions 
are: the splitting method is algorithmically clean; the splitting method avoids cos;iy 
short messages; the splitting method avoids non-nearest-neighbor communication 
and contention. These advantages are even clearer in three space dimensions. 

For a particular spectral element decomposition in ’ we denote an associated 
sequence of ri edge-pass operations (Z) as “regular” if it is aigebraically equivalent 
to the direct stiffness summation of Fig. 5. For many spectral (or substructured 
Finite) element decompositions it is difficult, if not impossible, to find an edge-pass 
sequence. (Z)? which results in correct nodal values at ali vertices. However, it is 
often relatively simple to find a sequence (2) for which the number of verrices wit> 
incorrect values, denoted “special” nodes, is small. This suggests the Iroliowing 

FIG. 7. Direct stiffness summation for the four element configuration of Fig. 1 employing directiod 
fxtorization. 
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strategy: first, a vector reduction (sum) operation is performed to accumulate the 
contributions of all elements to the residuals associated with the special nodes; 
second, a standard d-pass sequence is performed, (Z); third, the results of the 
vector reduction are redistributed to the special nodes. The summation strategy is 
illustrated diagrammatically in Figs. 8b-f for the spectral element mesh shown in 
Fig. 8a. 

If we (suggestively) denote the number of special nodes by E, the number of clock 
cycles required to perform direct stiffness summation is then 

~~KN~-~/itf+c~a(N~-~) Nd-1+~5~(~)elogM, 

(b) 

(cl Cd) 

n # 
(e) (0 

FIG. 8. (a) Spectral element Neumann problem for which standard directional factorization direct 
stiffness summation fails; the interior corner corresponds to a “special” node. The modified directional 
factorization procedure involves: (b) gather and summation of special nodes, (ck(d) standard direc- 
tional exchange, and (e) redistribution of special nodes. The final data in X, is shown in (f). 
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where the c3 term (of (31)) represents the summation of all edge values, the cg term 
represents the communication of edge values between processors, and the cj term 
accounts for the special-node treatment. Note that cq is indepsndent of K and &I 
by virtue of (37a). More details of the direct-stiffness procedure can be found in 
c341. 

The residual calculation (38a) is the most complicated operation in conjugate 
gradient iteration. The diagonal-collocation operation (38b) is completely ccn- 
current and communication-free, with computational complexity 

Similarly, the inner product (38~) is a standard vector reduction, which is evaluated 
by first performing intra-elementjintra-processor sums, and then evoking an inter= 
processor vector reduction (37b). The resulting computational complexity is 

c,KN”/fw+ c,o(l) log M, 

where the first and second terms reflect intra- and inter-processor summation. 
respectively. Note that for inner products of functions u,, E Xi,, the elemental partial 
sums must take into account the “multiplicity” of boundary nodes 

On the basis of the preceding analysis we arrive at an approximate expression 
for the number of wall-clock cycles required to solve (21) by conjugate gradient 
iteration on M processors, 

+c40(Nd-i)-Nd-1+Cj~(&)E10g~+c,a(l)logM) (41) 

W-e identify the cl-, cz-, and c,-terms of our serial estimate (311); however, there are 
now three new terms associated with communication and (only) log Jd- 
paralielizable operations. From (41) and (31) we can derive the inverse parallel 
speedup, S;- i = Z$/Zf, in which we keep only the leading order terms in comnute- 
tion and communication: 

3,’ = l,‘M+a .(l,‘M)(M/K) a(Nd-‘)iN’ 

Here a, ,G1? b2 are constants independent of N, K. and M. The estimate (42) is 
general not only as regards geometry, but also in the fact that it extends to the full 
Stokes (and Navier-Stokes) problem by virtue of the Uzawa method. 

Note that (42) is the inverse speedup for the same algorithm on the same basic 
processor/memory unit; vectorization is assumed to occur r~ithin the spectra! 
elements and, thus, scales out of the speedup analysis. Vectorization can be 
efficiently applied to (39) given the local structure internal to elements, as described 
in further detail in Section 5.2. 
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We illustrate our speedup analysis graphically by plotting in Fig. 9 a simplified 
plot of S,’ and its constituents as a function of M for some representative 
parameter set (K, N, J, 0). In particular, we break (42) into three parts: the first 
term-the calculation term-labelled “ca” in Fig. 9; the second term-the direct 
stiffness term-labelled “ds”; and the third and fourth terms-the inner product 
terms-labelled “ip.” The direct stiffness curve is shown to grow slightly with 
increasing M, in anticipation of possible network contention associated with an 
increasing number of processors. 

We make several comments concerning the computational complexity (41) and 
speedup (42). First, in the limit of vanishing communication, [T =O, we achieve 
unity-parallel-efficiency performance; this is due to the choice of an intrinsically 
concurrent iterative procedure. Second, even in the case of non-negligible com- 
munication time, rs # 0, the method can maintain good performance due to the 
l/N2 and l/Ndf ’ algorithmic ratio of communication to computation; this 
favorable ratio derives from the geometric decomposition of work, the intrinsic sub- 
structuring associated with spectral elements, and the correct choice of boundary- 
minimal polynomial bases. In essence, most nzernor)? nccesses are local. Third, for a 
fixed discretization I? = (K, N) there is an optimal number of processors Mopr, 
16 M,,, 6 K, that maximizes speedup by trading off concurrency and communica- 
tion through “super-substructuring” of spectral elements. For instance, if for 

Normalized 

1 2 4 8 16 32 
Number of Processors, M 

FIG. 9. Illustration of computing times associated with the M-parallel conjugate gradient solution 
for a problem of fixed size. The growth of the inner-product time illustrates the limiting nature of global 
operations, resulting in a minimum solution time for a number of processors Mb,, < 02. 
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illustrative purposes we neglect the pZ term in (42 j, we find that M,,PL = 
m.ax( I, min[K, Mb,,] 1, where M& is the local minimum &I&,, = .&IN”+ ’ In 2/p I at i I 
shown in Fig. 9. 

By virtue of the facts that Mb,, scales with K and that M is bounded by K (the 
spectal element being an “indestructible” data unit), we conclude that the high- 
order spectra! element parallel paradigm is intrinsically Inedium-graiiled in charac- 
ter; the number of processors and speedup grows with problem size (in contrast to 
fixed speedup in coarse-grained processing); however, the number of degrees-of- 
freedom per processor remains “large” (in contrast to fine-grained processing). ln 
the case where IM,~~ = Mb,, < K it can be argued that the implicit granularity of the 
spectral element discretization is not the limiting factor in speedup; in the case 
where Ad&, > K -+ Mopt = K, it is clear that the spectral granularity is: poten:iaSy 
limiting performance. In the latter situation it is of interest to consider intra-element 
parallelism. 

We close this section by noting that on the basis of our performance estimates 
(42) we can predict the solution times for the case where the number of processors 
and number of degrees-of-freedom (elements) grow in fixed proportion. This 
corresponds to the “scaled” speedup analysis presented in [35], and is, in faazt. 
arguably a more interesting analysis than that of fixed problem size with increasing 
number of processors, given the general trend in computational fluid mechanics to 
solve ever larger problems in a reasonable time, rather than fixed-size problems in 
reduced time. (One instance where this trend does not hold is in the case of 
parametric studies; however. in such instances one can often exploit parameter- 
based paralMism. ) 

Noting that the work requirements per node will scale as 

we can write the speedup for a fixed amount of work per node, Ii’, as (assuming 
E=O), 

which now tends to zero as M+ ~1 (i.e.. there is no optimal number of processors:. 
Furthermore, as the solution time r = (~v/lO~s~)(,Y~ 1 M), we see that for fixed N’ the 
problem solution time is constant to within small logarithmic constants. In essence. 
by increasing the problem size (K), the inner product curve in Fig. 9. is depressed, 
thereby allowing a proportionately larger number of processors M to be ~jffecrioe~~. 
utilized. 

Remark. Although we have focussed primarily on the variational structure of 
our methods, there is, of course, an equivalent linear-algebra interpretation of the 
parallel work decomposition. To illustrate this algebraic viewpoint we consider : 
problem of Fig. ?a, for which the matrix structure (11 j-( 12) is shown exphcitiy in 
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Fig. 10. It is seen that 4 comprises four (K= 4) full submatrices, [ak] = Aiq, with 
each pair of adjoining submatrices coupled by a single overlapping row and column 
associated with the condition (8a). 

We then consider the elemental “incomplete” residual [F”] = $ = A:.$ = 
[A”](uk). At internal nodes (i E { 1, . . . . N- 11) ^k t I 1s complete ( = Y:), as there is no 
overlap between the [Ak] for these nodes. However, at the element interface 
between two elements k and k+ 1, the complete residual must be the sum of two 
inner products: (Us) with the last row of [Ak]; and (uk+l) with the first row of 
[Akf ‘1. The sum of these two inner products is precisely the sum of the incomplete 
residuals [ik] and [?“+‘I at their shared node, thus showing how the incomplete 
residual/direct stiffness procedure is related to the underlying matrix structure. 

4.3. Comparisorz with h-Type Substructure Methods 

The description of spectral element discretizations in Section 2, of iterative solvers 
in Section 3, and of parallel constructs in Section 4 can be readily extended to 
h-type finite element substructure techniques [4, 5, 121. We consider first the one- 
dimensional problem (1 ), and introduce the finite element substructure discretiza- 
tion parameter, I;= (K, &). The interval /1 is divided into z substructures A“, where 
Ak is defined by ak <.x< a”+ b; each substructure is, in turn, broken up into fi 
linear finite elements of equal length, b/D. The finite element approximation space 
fh is thus given by 

&= (u I L’l.lLEP,-(Ak)} c-#(A), 

where F.Q( nk) is defined by 

(45) 

cv(~“)= (0 I Z’I]$yJ EP1(]9;, f;+,[, VqE (0, . ..) lV- 1)) nH’(ll”). (46) 

The finite element “collocation points” are given by ri = ak + ( Fq + 1) b/2, 
1 < k 6 z, 0 < q d F, with zq = - 1+ 2q/# for 0 6 q 6 fi. The finite element equa- 
tions are then given by (5) and (6), with appropriate modification of the inner 
products to reflect the low-order space and new collocation points. Note that in one 
space dimension K= (K, w) is equivalent to /I= (Km, 1); we choose the substructure 
notation to more clearly illustrate common data structures. 

FIG. 10. Structure of the discrete Laplacian operator. 4, in R’ for the discretization in Fig. 2a. The 
submatrices have a single overlapping row and column corresponding to degrees-of-freedom shared at 
element interfaces. 
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The local nodal basis for ~I,E f/;, can be written analogously to (7t(8) as 

p=o 

&E {u 1 z!/,;‘,~z~+lc EP*(]Z,, T,+,[) VqE 10, ...j m- 115 nH’(/F), (473) 

I;,(&) = 6,, vpp. q E (0, . . . . Jq’, (“7c) 

with .Y E A” and r E I related by .Y = a” + (1. + I ) bj2. The global PI’ condition and 
Dirichlet conditions on the I$ are the same as for the spectral element basis, 
(g)/Fig. 2; this fact will be critical in evaluating computational complexity. The .&ml 
finite element equations are very similar to ( 1 1 )( 12 ), however there is now a great 
deal of intra-substructure sparsity in the matrix due to the locally compact support 
of the low-order finite element space. That is, the submatrix blocks in Fig. 10 which 
are full for the spectral element discretization are now sparse (in fact, tri-diagonal). 

The extension of (45)-(47) to the multi-dimensional case closely paraifels that of 
the spectral element development. We use tensor product spaces and bases, 
(IS)/Fig. 4. arriving at the final set of Eq. (21) and direct stiffness procedure s 
in Fig. 5. Note that the tensor product forms are not important in h-type methods 
as regards sum factorization (28) (& products are evaluated in terms of local 
stencils); however, they are important in maintaining locat structure. The fimte 
eiement substructure equations and spectral element equations are readily de&cd 
in terms of the same quantities due to their common variational foundation: in fact, 
substructure h-type and spectral element methods can be used si.multaneousHy nn the 
same calculation using nonconforming “mortar” methods 636-381. 

We can now consider the computational complexity. 2::. assocrated with 
conjugate gradient solution (30) of substructured finite elements on the native 
medium-grained processor of Fig. 6. For the discretization parameter &= (K* Ii;‘) 
and M processors we find, to leading order, 

2:,=A~(~,~~d/MfE15(lpSd~i) md-‘+~xo(l)log-V;~, ;48) 

where the significant difference between (48) and (,41) is the reduced work needed 
to evaluate the h-type residual. Of interest is comparing the time to compute, :. for 
the spectral element and finite element approximations, pJL1 = r/f = Z.:f;2{I ) 

where we assume that the same number of spectral eleme~t~s~bstructures, K= K, 
and processors, M, are used in each calculation. 

We (plausibly) assume mf = N4, and take fi = PAT: ,U 3 1 as the spectral element 
approximation will always be at least good as the hear h-type approximation 
(recall that the error, E, is fixed). We start by considering only the first terms m the 
numerator and denominator: this ratio is the usual serial work comparison of high- 
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order and low-order methods, pI = Zf/zf = N/pd. It can be shown that p, is 
significantly less than unity for an interesting class of problems, in particular for 
smaller E, smoother solutions, and higher space dimension d [23]. Of interest in the 
context of the current parallel analysis is the fact that the two remaining (com- 
munication) terms in the work estimate (49) are at least as large for the low-order 
method (F4-, Es- terms in the denominator) as for the high-order method (c4-, cg- 
terms in the numerator); in particular, if the direct stiffness summation offset is 
important, the low-order-method communication terms can be larger than their 
spectral element counterparts by the factor pd-- I. We thus see that the relative 
advantage of high-order methods improves in a medium-grained parallel environ- 
ment, due to the fundamental fact that communication is independent of scheme 
order if proper boundary-minimal bases are chosen; this is a general argument for 
high-order methods, and need not be restricted to p-type (N--t a) convergence 
strategies. 

Lastly, it should be noted that the z= ($ #) description of the finite element dis- 
cretization is artificial in that it imposes a coarser granularity on the problem than 
is actually present. The preceding analysis is thus only directly relevant when 
Al&, <K. When this condition is not satisfied, the finite element substructure 
approach can be readily refined due to the homogeneity of the approximation, 
whereas extension of the spectral element method to intra-element parallelism is less 
straight forward. Our conclusions for the medium-grained paradigm should, there- 
fore, not be applied to the fine-grained case without additional analysis and without 
further specification of the cost objective function. 

4.4. Architecture Mappings: Message-Passing HJ’percube 

In this section we consider how the native parallel processor defined in Fig. 6 and 
analyzed in Sections 4.14.3 maps to message-passing hypercube architectures. (The 
arguments should apply with little modification to message-passing lattices; map- 
ping to a more natural but less general-purpose and less commercially developed 
reconligurable lattice structure is discussed in [32, 38, 391.) We recall that a 
medium-grained hypercube network is defined by M= 2O “large” processors, P,, 
p = 1, . ..) M, with a direct link between any two processors Pp and P, for which 
p - 1 and q - 1 differ only in one bit in their binary representation. The topological 
properties of hypercubes are summarized in [9], and numerous applications of 
hypercubes are described in [40,41]. 

We assume that the spectral elements have been distributed amongst the pro- 
cessors according to some partition E,, q = 1, . . . . M. If we compare an arbitrary 
partition on the hypercube to the ideal partition on our model parallel processor 
of Fig. 6, our communication estimates (41) will be modified by the introduction of 
non-nearest-neighbor communication (non-unity-dilation mappings) and possible 
contention (network load imbalance/saturation). In general, it will not be possible 
to find a mapping for which there exists a direct link in the hypercube for every 
direct link in our model processor. That is, the hypercube architecture violates 
assumption (37a). 
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The first, and most obvious, effect of not satisfying (37a), with which we associate 
a multiplier i 1, is that the direct stiffness summation will require more communica- 
tion steps due to the lack of direct links between element pairs assumed in the ideal 
model of Fig. 6. The second effect, with which we associate a multiplier iz:. derives 
from the fact that a particular hypercube partition E, may give physically adjacent 
spectral elements non-nearest-neighbor positions in the hypercube network. This 
will potentially increase the transmission time between these spectral eiements in 
the direct stiffness summation procedure: the magnitude of the deterioration wih 
depend on the message-passing protocol. For the case of store-and-forward we 
expect a maximum increase in transmission time of O(log M); for the case of 
wormhole or pipeline routing we expect substantially less deterioration. The third 
effect, with which we associate a multiplier i.,, is the fact that, in the absence of 
direct links between communicating elements, contention can occur during rounng 
through the hypercube. This effect can be quite difficult to quantify. in particular for 
general partitions on large cubes. 

We denote that all of these effects are associated with the direct stiffness term of 
(41); the log M communication terms are unaffected by the hypercube mapping as 
the hypercube architecture honors (37b) by virtue of simple binary-tree-like embed- 
dings f93. We thus arrive at our new estimate for speedup for the hypercube 
system, 

in which only the direct stiffness term is modified. This speedup model wili serve to 
interpret the hypercube computational results to be presented in the next section. 

The above considerations suggest that the spectral element-to-hypercube parti- 
tion can lead to computational inefficiencies. Although on computers with fast 
communication and direct routing these effects may not by leading order, it is hke!y 
that computation speeds will always outpace off-boaud communication rates, and 
that these mapping issues should therefore not be ignored. We briefly discuss here 
several fairly standard mapping strategies. The first strategy, an intra-processor 
strategy, S1 intra, attempts to partition elements such that members of E, shar,: 
edges; this reduces AI. Furthermore, this intra-processor strategy promotes inter- 
element nearest-neighbor mappings, Sl inter, which reduces & and ;13. The second 
intra-processor strategy S2i,tra, randomly partitions the elements to form the E,: 
the motivation behind this strategy is to render the calculation load-balance-inten- 
sitive with respect to local mesh refinement [423. Although we do not consider 
re~~ement-induced load imbalance in this paper, it is certainlji an important issue. 
The strategy XI,,,,, does not preclude subsequent attempts at Slinter; however, it 
certainly makes the task difficult, and one must conclude that S2i”t,, will tend to 
increase not only L, , but also /1, and 1,. Heuristics for achieving these strategies are 
described in [34,42,43]. 
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4.5. Performance Measures and Optimalit~~ 

The speedup S, and parallel efficiency, v] = SJM, only signify the extend to which 
a particular discretization-solver can exploit multiple copies of a particular pro- 
cessor with a particular communication system. Although S, can be effectively used 
to evaluate optimal operation on a particular machine, its value as an absolute per- 
formance measure is limited. First, if a value of S, on one computer is to have any 
significance on a second computer, the nondimensional similarity variable, r~, must 
be similar in the two cases [8]. Second, we note that large speedup or parallel 
efficiency does not necessarily imply small compute time r (=SZf/S,) or run-time 
cost c ( =rfC/tdep); the former depends on 6 and Z‘,?, whereas the latter depends on 
both T and C. (The parameter f here is the ratio M/M,,,, that is, the fraction of 
available processors on a machine being dedictated to a particular calculation.) For 
instance, by increasing 6 one decreases 6, thereby increasing parallel efficiency (for 
fixed M) while simultaneously increasing T. Similarly, although one might achieve 
high speedup with a readily parallelized “poor” algorithm (large Zf’), the resulting 
compute time T might be larger than that for a less parallelizable but “better” algo- 
rithm (small Zt). Furthermore, if one obtains high parallel efficiency due to a small 
o that derives from a costly switching system, high parallel efficiency need not imply 
low cost c. 

It thus follows that to evaluate the performance of different computers with 
respect to our particular algorithm we should compare some measure of T and c 
directly. To this end, we rewrite T as T = Z;4/106cVs’, where 2: = c,,W (cr, relates 
clock cycles to operations, e.g., through vectorization), and s’ is the actual speed 
achieved, s’= S,/1066cV, in MFLOPS. We can then construct a plot analogous to 
Fig. 1 in which we characterize the performance of an algorithm on different com- 
puters by a point in s’- e’ space, where e’ = s’/fC. As for Fig. 1, an algorithm- 
architecture point A is better than any other point B if A is in the quadrant above 
and to the right of B; the s’ -e’ space is different from Fig. 1 in that it now includes 
non-constant algorithm-architecture interactions through the dependence of s’ on 
speedup, S,, and c r,. 

The s’ - e’ characterization of an algorithm-architecture is preferrable to direct 
reporting of t, c in that it is a more universal measure of performance; for instance, 
the number of iterations, IV:, and even the base (serial) work per iteration, scales 
out of the s’ rating. However, by the same arguments, the s’ - e’ representation can 
be misleading. First, one can easily construct methods based on algorithms which 
are highly concurrent but poorly convergent (in discretization parameter, h, and 
iteration number, N:), for which high s’ does not reflect low T. Second, a poor 
algorithm-architecture coupling, that is low efficiency, need not imply either a poor 
algorithm or a poor architecture; in comparing the performance of two computers 
one should use the best possible z-minimizing algorithm on each computer. In 
order to address these two reservations, we shall supplement our s/-e’ data with 
T and ‘I, respectively. 
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5. CO~~PUTATIONAL RExiTS 

5.1. Gene& li~lp!einentation 

In the same way that we decompose the algorithm development into distinct 
stages, the software development process is also broken up into generic and 
machine-specific stages. In the first stage (analogous to the lirst step of the develop- 
ment process), we write a “serial” code in which, in the bulk of the code, the 
element number, k-the parallelization index-is only referenced as a ccxmter 
within the element set E, with no relational or logical significance. All other 
operations (i.e., those that will typically require communication) are relegated to 
isolated subroutines. For our algorithms the latter include only the direci stiffness 
algorithm and vector reduction (inner products and norms). In the second stage of 
the development process, we port the serial code to a particular IMD parallei 
machine by: writing device drivers for the communication subroutines; descending 
identical copies of the serial program to all processors; defining the workload for 
processor P, by replacing E of the serial code with E,. It is important to note that 
most of the effort is in stage one, which is machine-independent, with subsequent 
porting activities in stage two being relatively simple, 

We note that our software model is SPMD (single program multiple data), but 
requiring a MIMD rather than SIMD environment. The former appears to have 
real advantages over the latter in flexibility, particularly if automatic refinernest 
procedures are to be considered. 

5.2. IniP/ Vector Hypem4be Calculations 

We have implemented our methods on the Intel vector hypercubes. the 
iPSC/l-VX/d4 and its successor, the iPSC,‘2-VX/d4 (d4 denoting dimension B = 4, 
that is M,,, = 16). The iPSC/l-VX is a 286-based system with store-and-forward 
message-passing; the iPSC/2-VX is a 386based system with pipelined communica- 
tion routing. In both cases the same vector hardware is used, capable of a peak 
speed of 10 MFLOPS/board. The two machines differ primarily in scalar speed and 
communication speed and robustness, with the iPSC,‘? b representing a significant 
improvement in both capabilities due to advances in technology and architecture. 
The iPSC;‘l (iPSC,i2) 286based (386-based) mother board achieves .62 !.%5! 
MFLOPS, and communication rates of A( 1), A( z j = 5960,~s 33~s (300~~~ !.4+s ‘; 
The iPSC software environment is MIMD, requring explicit (i.e., non-automatic 1 
parallelization and data management. 

We now analyze the spectral element-Intel vector hypercube algorithm-ar~b~tec” 
trure coupling based on the framework of Section 4.5 and the complexity estimates 
of Section 4.2 and 4.4. We begin by analyzing the simple three-dimensional “chain” 
shown in Fig. 11, with periodic boundary conditions imposed on all sides. We con- 
sider six problems of increasing size, K= 1, 2, 4, 8, 16, and 32, respectively. with 
1V’= PO in all cases; the partitions E, for each problem are given in Table III. Note 
that for a particular K the number of processors that can be used is limited by thaee 
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FIG. 11. Periodic chain of K elements (N= 10, d= 3) used for multi-processor timing analysis. 

factors: memory constraints preclude M< K/2; machine size precludes M> M,,,; 
and algorithm granularity precludes M> K. By virtue of the Gray-code mapping 
[9] used for the partitions Eq the hypercube implementation maps exactly to our 
model processor system, A1 = 1, = 1, = 1. (Note that communication between faces 
of elements on the same processor do not pass through the network.) 

We tabulate the results of our numerical experiments for the iPSC/l-VX in 

TABLE III 

Element Distribution Eq, q = 1, . . . . 16, for the Periodic Chain of Fig. 11 

K;M= 1 K,ikf = 2 
Processor 
number K=l K=2 K=4 K=8 K=16 K=2 K=3 K=8 K=16 K=32 

1 1 1 1 1 1 1,2 1,2 I,2 1,2 1,2 
2 2 2 2 2 3,4 3,4 3,4 3,4 
3 4 4 4 7,8 7,8 7.8 
4 3 3 3 5,6 5.6 5.6 
5 8 8 15.16 15.16 
6 7 7 13.14 13.14 
I 5 5 9.10 9,lO 
8 6 6 11,12 11,12 
9 16 31,32 

10 15 29,30 
11 13 25,26 
12 14 27.28 
13 9 17,18 
14 10 19,20 
15 12 23,24 
16 11 21,22 
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Table IV as a table of T(K, M), T,,(K, M). T,,(K, M), T,jK, M). 
time to calculate 250 conjugate gradient iterations for the 4 syst 
T,,, T,,, I’, represent the breakdown of T(K, M) in terms of calculation time. 
direct stiffness communication time, and inner product communication time. Hn 
order to calculate speedup on the basis of this limited dataset we use the anaiysis 
of the previous sections to motivate a functional form for T. 

fr(K, M)=aK,‘M+ (b+clogM).{l -S,.,,). .‘i’ , _! I ) 

where a, b, and c are constants assumed independent of K and M. We then fit these 
constants (via least squares) to the total time data T of Table IV? Finding LC = 9.2 s, 
b = 3.1 s, and c = 6.2 s; these values are not inconsistent with the direct breakdown 
of T(K, M) into T,, (a-term), Tds (b-term), and T, (c-term), which serves to verify 
the form of (51). Note also the constancy of T‘, for M> 4. 

From (51) we calculate the inverse speedup, SYmL =jT(K, M):yif,-(K, I ), which is 
plotted in Fig. 12; also plotted are the measured speedups for the data of Table IV. 
T(K, M),I~~(K~ 1). The reasonably good fit of (51) to the data is further verification 
of the model. We make several comments concerning the speedup curve of Fig. 12. 
First, the optimal number of processors, AL&, is less than K; furthermore, the ratio 
lkf~,,i!K is roughly constant, as predicted by the models of the last section. The fact 
that M;,, < K implies that for this machine, which is a fast calculator and a slow 
communicator (o relatively large), the spectral element granuiarity is not limiting. 
Second, the speedup grows with problem size, as must be the case 
contributions in Fig. 9 being less important as K increases). Thir 
speedup on 16 processors is roughly 5.0. corresponding to a parallel efficiency of 
q = 0.3. 

We now repeat the chain experiment, but now on the iPSC,‘2-VX machine. We 
show in Table V and Fig. 13 the iPSC$ analogues of the iPSC/l, Table IV and 

TABLE iV 

iPSC.‘l-VX Timing Results for 250 4 Iterations, N= i0, d= 3 

K,,’ !W Time (s) Time,, Is) Time,(s) Time ,p ( s ) 

L,‘l 
2 ‘? ,- 
3;4 
S/8 

16:!6 

2.‘1 18.5 
4:2 22.9 
8.4 33.3 

16,‘s 40.1 
32:16 46.6 

9.7 8.9 0.40 0.30 
14.0 9.0 2.8 2.3 
33.8 8.5 9.1 7.5 
31.7 8.6 9.0 l-i.3 
37.1 8.6 8.5 19.8 

17.7 0.40 
17.6 2.6 
17.3 7.3 
L7.J 8.5 
17.4 8.: 

0.37 
2.3 
1.7 

14.2 
20.2 
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FIG. 12. Inverse speed-up on the iPSCjl-VX for 250 4 matrix iterations of the spectral element 
configuration in Fig. 11 for problems defined by K= 1, 2, 4, 8, 16, 32. The solid line indicates the tit 
frt K, M)/f,jK, 1) to the data of Table IV; the symbols represent the actual data. Open symbols indicate 
the data points for the M= 2 cases which are anomalous due to the message passing protocol; these 
points are not used in computing the fit. The upper dashed lines indicate the (unobtainable) operating 
regime where M> K. The lower dashed line is the peak theoretical speedup, l;M. 

Fig. 12, respectively. First, as before, the observed performance follows closely that 
predicted by our models; we find the coefficients in (51 j to be a = 8.1 s, b = 0.46 s, 
and c = 0.32 s. The iPSC/2 is a sufficiently fast communicator that Mb,, is now 
greater than K, indicating that, for this machine, finer grain algorithms may be of 
interest. Second, the maximum speedup of 14 on 16 processors is much larger than 
for the iPSC/l (corresponding to an efficiency of ye = 0.88) due to a decrease in 
a--this increase in speedup is significant (i.e., results in a decrease in r) as it 
originates in a decrease in A, not an increase in 6. 

To investigate “non-idealities,” we have considered two additional tests of the 
N= 10, K= 32, M= 16 problem on the iPSC/l. In the first test, we replace the par- 
tition of Table III with the partition E, = {2q - 1,2q}, in which we now have a 
non-Gray ordering, but the amount of data passed across the network is unchanged 
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TABLE V 

iPSC,:2-VX Timing Results for 250 A Iterations, h’= 10. ci= 3 

K ‘34 Time is) Time,,, (s) Time,, (5) Time,, is) 
__~ 

1 I 8.3 8.2 3.06 3.06 
7 ,-I -, 2. 9.4 8.3 6.70 0.39 
4.: 9.8 8.1 0.68 097 
8.X 10.1 8.4 0.53 1.15 

16’16 10.4 8.3 0.62 1.53 

7 1 16.3 16.2 G.CS (3.06 
4 ,‘2 17.5 16.1 0.83 0.56 
8 ‘4 17.8 16.i 0.76 0.9; 

16,‘s 18.: 15.9 0.79 ! .47 
32/16 18.4 !6.1 0.76 1.59 

1.0 

S,” 

.6 

.6 

\ 

\..- - 

Kyl 
- - - - 

K=2 
- - 

2 4 s 1s 32 

Number of Processors, M 

FIG. 13. Inverse speed-up on the iPSC.‘2-VX for 250 4 matrix Iterations of the spectral element con- 
kguration in Fig. I I for problems defined by K= 1, 2. 4, 8. 16, 32. The iPSC:2-VX performs significanti; 
better than the iPSC.‘l-VX due to decreased communication time. 
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(that is, 11, is still unity, but A?, 1, are potentially greater than unity). In this case 
Tds (and hence T) are increased by 9 s to Tds = 26 s (T= 55 s), resulting in a 17% 
decrease in speedup. In the second test, we replace the partition of Table III with 
the S2intra partition Eq : E,, E,, . . . . E,,= (1, 31, 12, 4}, (5, 71, (6, S}, (9, lo>, 
(11, 13}, (12, 14), (15, 161, (17, 1X}, (19, 211, {ZO, 22}, (23, 24), (25, 261, 
(27,28j, (29, 30), (31, 32), in which we now not only have a non-Gray ordering, 
but also require twice the amount of data to flow across the network (that is, 
A,, A,, and A3 are all potentially greater than unity). In this case Tds (and hence T) 
are increased by 11 s to T,, = 28 s (T= 57 s), resulting in a 20% decrease in 
speedup. Both of these effects are significantly less on the iPSC/2 (decrease in 
speedups of less than 1%) due not only to decreased A, but also to wormhole rout- 
ing. The latter is very significant in de-sensitizing the calculation to mapping. We 
conclude that non-idealities as regards mappings are significant but not dominant. 

We finish our analysis of the chain problem by plotting in Fig. 14 the results 

iPSC/ZVX/d4 v 
10-I - 

iPSC/l-VX/d4 A 

e’ 

(MFLOPS/$) 

e’ 
(MFLOPS/$) 

10-s I 10-s - 

I iPSC/ l-d4 n iPSC/ l-d4 n 

t 

10-6 4 
10-Z 10-l lo0 10’ loL lo3 

s’ (MFLOPS) 

FIG. 14. Computational resource efficiency for the K= 32 chain problem of Fig. 11 for the 
iPSC/l-d4, iPSC,‘l-VXjd4, and iPSC;2-VXid4 hypercubes (M= 16). 
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for S7(K= 32, M= 16) in s’- e’ space: s’ is calculated as (0.1 )MFLOPS 
T(K) G~~XIWG Ml, where T(WpvAx is the timing on the DEC ,uVAX-II (T(Kj,,I,x, 
= 275 s for 250 d iterations per element), and 0.1 MFLOPS is taken to be the 
application-independent speed rating of the PVAX-II; e’ is calculated from s’ and 
the cost data summarized in Appendix A. It is seen that the hypercube s’ - P’ point 
is indeed interesting in that it achieves near supercomputer performance at a frac- 
tion of the cost. To illustrate the importance of the s’--’ framework, we have also 
included the data point for the K= 32, M= 16 problem on the n~~~ectar il?SCjI: 
although the parallel efficiency on the nonvector machine is close to tinily 
(q > 0.99), the nonvector machine is obviously uninteresting compared to its vector 
counterpart. This is due to the fact that the nonvector machine achieves high 
efficiency due to a decrease in 0 brought about by an increase in 6, not a decrease 
in d. 

It is apparent from the nonvector iPSC,!I exercise that vectorization interna! to 
the nodes is important to performance; the nested parallel:‘vector hierarchy of the 
spectral element discretization is ideally suited for the task. It should be noted that, 
despite this natural hierarchy, vectorization and paraI!elization are not i~de~e~~e~~ 
opportunities. For example, on a vector machine vector lengths for matrix muhipies 
of the form (28 j in R3 are typically of length KN’, KN, and N’ (depending on 
spatial direction, assuming no transposes), whereas on a parallel machine the sank: 
operations entail vectors of length KN'/M. KN/M: and ,V2. T is problem is not too 
serious, in particular given the smaller vector start-up costs of most new machines; 
the current iPSC vector board achieves the peak speed of IO MFLOPS for matrix 
multiplies (28) independent of spatial direction by vectorizing over the inner 
product (vs. row) index. Our codes achieve 34 MFLOPS per node out of a. 
possible 10 MFLOPS vector; the iPSC,i2 is slightly faster per node given the faster 
scalar speed. 

As a major point of this paper is the development of general methods for “real” 
fluid flow problems, we conclude with the solution of a full three-dimensional 
Stokes problem. We consider the geometry of IS, with periodic boundary 
conditions in the flow direction, and no-slip boun ry conditions on all solid *wails. 
The discretization parameter is taken to be h = ( 32, N= lo), and the problem 
is solved on M= I6 processors. The Slintra and SIinrer strategies are pursued so as 
to achieve a nearest-neighbor mapping. thereby minimizing ,I,, d,, and i,, The 
element to processor mapping is an extension of that depicted in Fig. 6; pairs ci 
vertically adjacent elements are placed on each processor. and a copy of the 
mapping is repeated on processors P,, ,..) P,, to effect nearest neighbor commumca- 
tion between the upper and lower levels of elements. The results of the calculation 
are shown in Fig. 16 in terms of the velocity field. 

On the basis of timings similar to those described for the “chain” problem we 
plot in Fig. I7 the s’ - e’ points for this calculation on the ~IVAX, CRAY-2;‘4-256, 
IPSC/l-VXid4, and iPSC/2-VXjd4 computers; the actual timing data is given in 
Awet 93 (Note that all e’ data is computed based on the full Mmax configuration 
descri in Appendix A. with .f= M,/llf,,,), As expected. the full Stokes solve: 
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FIG. 15. The K=32 spectral element domain for the steady Stokes problem of flow past two 
cylinders in a duct. 

behaves in a similar fashion to the elliptic solves, with the various machines per- 
forming as for the chain problem. The most important conclusion from Fig. 17 is 
that the new generation of parallel machines is able to achieve supercomputer 
speeds at a cost advantage of order ten-to-one. Furthermore, this performance is 
scalable, following the nearly-constant-time rule described by equation (44) (see 
Table V), indicating that in both r and c distributed-memory parallel machines 
have much to offer compared to their vector or serial counterparts. 

The CRAY-2/4 results are of interest in their own right. The CRAY-2/4 is a 

FIG. 16. Velocity vectors at the mid-plane of the domain shown in Fig. 15. 
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FIG. 17. Measured computational resource efliciency, c’, for the Stokes problem of Figs. ‘,5 and 16. 
Solution times are given in Appendix B; in all cases elf,,, processors are used, save for the CRAY-2,G 
(M = : j calculation, in which a singie processor is used. 

coarse-grained (four-headed) shared-memory machine, typically fecussed on 
through-put parallelism, in contrast to the medium-grained distributed memory 
speedup machines that are the primary concern of this paper. The CRAY-2 
parallelism is motivated primarily by cost-effectiveness, that is, sharing of memory 
costs; however, it is clear that the potential of 4 x speedup is significant. We believe 
that the good performance of our algorithm on the CRAY-2/4 (parallel efhciency 
of 80% on four processors) reflects the success of our lowest commen denominator 
approach to parallelism and software development. 

The conclusion that the iPSC’2 and related medium-grained distributed memory 
machines are superior to current vector supercomputers is clearly open to mucn 
criticism. First, vector supercomputers are much more easiiy programmed, as are 
coarse-grained parallel machines (the CRAY-2 results were achieved with auto- 
tasking); this implies greatly reduced development time, Second, and relatedl:~. the 
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presence of shared memory and fast random access allows many algorithms not 
appropriate in a distributed-memory environment to run effectively on a vector or 
coarse-grained system. However, there are also other reasons that support the 
parallel argument; large, expensive systems require multiple-user support, implying 
that the effective MFLOPS rate for conventional machines can, in fact, be much 
less than that indicated in Fig. 17. In summary, we feel that Fig. 17 does correctly 
indicate the architectural approach best suited for the problems of large-scale 
engineering and scientific computation, but that this conclusion must be tempered 
by due consideration of algorithm and software development issues. 

The results of Fig. 17 indicate that properly designed numerical algorithms can 
solve real problems on parallel processors at serial-supercomputer speeds, using 
only a fraction of serial-supercomputer resources. Full unsteady Navier-Stokes 
calculations have recently been performed on the iPSC/2-VX (with up to 64 pro- 
cessors) in a number of different configurations, including rotating flows, natural 
convection, the von Karman vortex street, vortex breakdown, and the horseshoe 
vortex [34, 44461. 

CONCLUSIONS 

The discretization-solver-architecture (or algorithm-architecture) optimization 
problem is an order of magnitude more difficult than the still unsolved 
discretization-solver problem of classical numerical analysis. The introduction of 
architectural considerations not only creates new algorithmic issues, but also brings 
into the analysis complex economic issues not readily quantified or modelled; it is 
clear that the algorithm-architecture optimization problem will ultimately be solved 
by intelligent evolution, not by explicit analysis. We have presented here a rational 
framework in which to evaluate parallel methods and have proposed an algorithm- 
architecture coupling for flow problems which is, if not optimal, certainly 
respectable. 

APPENDIX A 

Speed and Cost Data for Several Modern Computer Systems 

M ma?. , 
Price (K$) #of prow 

iPSC/l-d4 91 16 
iPSC/l-VX/d4 286 16 
iPSC/2(4M)/d4 203 16 
iPSC/2-VX/d4 363 16 
CRAY-214-256 15500 4 
FVAX-II 10 1 
FPS-164 500 1 

Rated peak 
s( MFLOPS ) e( MFLOPS,‘$) 

0.3 0.33 x 1om5 
160 55.9 x lo-’ 
1.8 0.87 x 10 -’ 
160 44.1 x 1om5 

1000 6.45 x 10m5 
0.1 1.0 x 10-j 
5.0 1.0 x 10-j 
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APPENDIX 

Timing Results for 80,000 Degree-of-Freedcm Stokes Problem 

TS”,,, 
(seconds I 

Parallel 
efficiency 

‘I, i 96 ) ;‘(MFLOPS’j c’(MFtOPSS) 

iPSC: l-d4 
iPSC ‘l-VX:d3 , 
iPSC,‘2(4M).d4 
iPSC/2-VX;d4 
CRAY-Z/4-256 ( 1) 
CRAY-2,‘4-22x(4) 
/‘VAX-II 

19100 99 0.3 0.33 x 10 -5 
360 25 16 56x10-’ 

5760 99 1.0 3.47 x 10-5 
130 15 a4 12.1 x 10-5 
87 100 66 1,70x 13-5 
27 80 211 1.36 x 10 -’ 

57200 105 0.1 1,0x 10-5 
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